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GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF
FLUTTER

By TEEODORE THEODORSEN

SUMMARY

The aerodynamic forces on an oscillating airfoil or
airfoil-aileron combination of three independent degrees
of freedom have been determined. The problem resolves
itself into the solution of certain definite integrals, which
have been identified as Bessel functions of the first and
second kind and of zero and first order. The theory,
being based on potential flow and the Kutta condition,
18 fundamentally equivalent to the conventional wing-
section theory relating to the steady case.

The air forces being known, the mechanism of aerody-
namic instability has been analyzed in detail. An exact
solution, involving potential flow and the adoption of the
Kutta condition, has besn arrived at. The solution is of
a stmple form and 18 expressed by means of an auxiliary
parameter k. The mathematical treatment also provides
a convenient cyclic arrangement permitting a uniform
treatment of all subcases of two degrees of freedom. The
Jlutter velocity, defined as the air velocity ai which flutter
starts, and which is treated as the unknown quaniity, is
determined as a function of a certain ratio of the fre-
quencies in the separate degrees of freedom for any magni-
tudes and combinations of the airfoil-aileron parameters.

For those inderested solely or particularly in the numeri-
cal solutions Appendixz I has been prepared. The rou-
tine procedure in solving numerical examples is pui
down detached from the theoretical background of the
paper. It first is necessary to determine a certain number
of constanis pertaining to the cass, then to perform a few
routine calculations as indicated. The result is readily
obtained in the form of a plot of flutter velocity against
frequency for any values of the other parameters chosen.
The numerical work of calculating the constanis is sim-
plified by referring to a number of tables, which are in-
cluded in Appendixz I. A number of illustrative examples
and experimental results are given in Appendiz I1.

INTRODUCTION

It has been known that a wing or wing-aileron struc-
turally restrained to a certain position of equilibrium
becomes unstable under certain conditions. At least
two degrees of freedom are required to create a con-
dition of instability, as it can be shown that vibrations

of a single degres of freedom would be damped out by
the air forces. The air forces, defined as the forces due
to the air pressure acting on the wing or wing-aileron
in an arbitrary oscillatory motion of several degrees of
freedom, are in this paper treated on the basis of the
theory of nonstationary potential flow. A wing-
section theory and, by analogy, a wing theory shall be
thus developed that applies to the case of oscillatory
motion, not only of the wing as a whole but also to
that of an aileron. It is of considerable importance
that large oscillations may be neglected; in fact, only
infinitely small oscillations about the position of
equilibrium need be considered. Large oscillations
are of no interest since the sole attempt is to specify
one or more conditions of instability. Indeed, no
particular type or shape of airfoil shall be of concern,
the treatment being restricted to primary effects. The
differential equations for the several degrees of freedom
will be put down. Each of these equations contains a
gtatement regarding the equilibrium of a system of
forces. The forces are of three kinds: (1) The inertia
forces, (2) the restraining forces, and (3) the air forces.

There is presumably no necessity of solving a general
case of damped or divergent motion, but only the
border case of a pure sinusoidal motion, applying to the
case of unstable equilibrium. This restriction is par-
ticularly important as the expressions for the air force
developed for oscillatory motion can thus be employed.
Imagine a case that is unstable to a very slight degree;
the amplitudes will then increase very slowly and the
expressions developed for the air forces will be appli-
cable. It is of interest simply to know under what
circumstances this condition may obfain and cases in
which the amplitudes are decreasing or increasing at a
finite rate need not be treated or specified. Although
it is possible to treat the latter cases, they are of no
concern in the present problem. Nor is the internal
or solid friction of the structure of primary concern,
The fortunate situation exists that the effect of the
solid friction is favorable. Knowledge is desired con-
cerning the condition as existing in the absence of the
internal friction, as this case constitutes a sort of lower
limit, which it is not always desirable to exceed.
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Owing to the rather extensive field covered in the
paper it has been considered necessary to omit many
elementary proofs, it being left to the reader to verify
certain specific statements. In the first part of the
paper, the velocity potentials due to the flow around
the airfoil-aileron are developed. These potentials
are treated in two classes: The noncirculating flow
potentials, and those due to the surface of discon-
tinuity behind the wing, referred to as ‘‘circulatory”
potentials. The magnitude of the circulation for an
oscillating wing-aileron is determined mnext. The
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F16URE L—Conformal representation of the wing profile by a circle.

forces and moments acting on the airfoil are then
obtained by integration. In the latter part of the
paper the differential equations of motion are pub
down and the particular and important case of un-
stable equilibrium is treated in detail. The solation
of the problem of determining the flutter speed is
finally given in the form of an equation expressing a
relationship between the various parameters. The
three subcases of two degrees of freedom are treated
in detail.

- The paper proposes to disclose the basic nature of
the mechanism of flutter, leaving modifications of the
primary results by secondary effects for future investi-
gations.! Such secondary effecte are: The effects of &
finite span, of section shape, of deviations from poten-
tial flow, including also modifications of results to
include twisting and bending of actual wing sections
instead of pure torsion and deflection as considered in
this paper.

The supplementary experimental work included in
Appendix I similarly refers to well-defined elementary
cases, the wing employed being of a large aspect ratio,
nondeformable, and given definite degrees of freedom
by & supporting mechanism, with external springs
maintaining the equilibrium positions of wing or wing-
aileron. The experimental work was carried on
largely to verify the general shape of and the approxi-
mate magnitudes involved in the theoretically pre-
dicted response characteristics. As the present report
is limited to the mathematical aspects of the flutter
problem, specific recommendations in regard to prac-
tical applications are not given in this paper.

1 The effect of Internal friction I8 In zome cases essential; this subject will be
contained In a subsequent paper.
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VELOCITY POTENTIALS, FORCES, AND MOMENTS OF
THE NONCIRCULATORY FLOW

We shail proceed to calculate the various velocity
potentials due to position and velocity of the individ-
ual parts in the whole of the wing-aileron system.
Let us temporarily represent the wing by a circle (fig.
1). - The potential of a source ¢ at the origin is given
by

o=7 log @+7?)
For a source e at (z1,7) on the circle
=1 log {@—=)*+ (y—w)?}

Putting a double source 2¢ at (z;,7;) and a double
negative source —2¢ at (x;,—1,) we obtain for the flow
around the circle

(z—z)*+ (y—w)?
(—z)*+ (y+u)*

The function ¢ on the circle gives directly the sur-

face potential of a straightline pg, the projection of the
pircle on the horizontal diameter. (See fig. 1.) In

this case y=1/1—:c’ and ¢ is a function of z only.
‘We shall need the integrals:

f log

+
fl o8 (z zlg’+(y+ylgz(ﬁ O)dzy=—1—ET— 1
_COS—IC(QZ—QC)-\/I — 2 (x__c)zlogN
where N=1—CI—J1—:;2,]] — &

z—C

€
p=5_log

@—z)'+ly—y)® o -
(.1: 331)2+(y+y1)2dxl 2(-'0—0)10,,N—21/1—? cos~le

The location of the center of gravity of the wing-
aileron z, is measured from @, the coordinate of the
axis of rotation (fig. 2); z; the location of the center

lh
N\

.‘/ [24 l ;lxal

c .g.of entire wing

/fp +x

\
Ax1$ of rotation’ ,
c.g.of aiferon-' +

F1GURE 2.—Parameters of tbe airfofl-alleron combination.

of gravity of the aileron is measured from ¢, the coordi-
nate of the hinge; and », and r; are the radii of gyration
of the wing-aileron referred to @, and of the saileron
referred to the hinge. The quantities zs and 75 are
“reduced ” values, as defined later in the paper. The
quantities a, z., ¢, and 2 are positive toward the rear
(right), A is the vertical coordinate of the axis of rota-
tion at @ with respect to a fixed reference frame and is
positive downward. The angles « and 8 are positive
clockwise (right-hand turn). The wind velocity v is to
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the right and horizontal. The angle (of attack) «
refers to the direction of v, the aileron angle g refers to
the undeflected position and not to the wind direction.
The quantities r, and rg always occur as squares.
Observe that the leading edge is located at —1, the
trailing edge at 4+ 1. '1%16 quantities a, ¢, ., Ts, Ta,
and 7, which are repeatedly used in the following
treatment, are all dimensionless with the half chord b
as reference unit.

The effect of a flap bent down at an angle 8 (see fig.
2) is seen to give rise to a function ¢ obtained by sub-
stituting —vB8b for ¢; hence .

¢a=2%b[1/1 —22cos™le— (z—c) log N]

To obtain the effect of the flap going down at an
angular velocity 8, we put e=— (r;—c)8b? and get

qoﬁﬂg—l::[-\/l—czw/1—x’+cos“c(:z:—2c)1/1—;c’
— (z—c¢)* log N]

To obtain the effect of an angle « of the entire air-
foil, we put ¢= —1 in the expression for ¢,, hence

o, =vab1—2*

To depict the airfoil in downward motion with a veloc-
ity b (+ down), we need only introduce f—: instead of a.

Thus .
go,"=hb—\/1 -z

Finally, to describe a rotation around peint @ 2t an
angular velocity &, we notice that this motion may be
taken to consist of a rotation around the leading edge
¢=—1 at an angular velocity & plus a vertical motion
with a velocity —&(1 +a)b. Then

. P2
pim L r @t 2) T F—a(l + Qb7
= dbz(%:c— a)1=2

The following tables give in succession the velocity
potentials and a set of integrals * with associated con-
stants, which we will need in the calculation of the air
forces and moments.

VELOCITY POTENTIALS
Pa=vab/1—22
oi=hb/T—27 °
pa= b5z —a WI=F

¢,=-};v,sb[1/1 2 cos~'e— (z—c) log N]
wp= %r Bo 1= 1—22+ (z—2¢)+/1—2% cos™'c

~(@—c)*log N]
where Nol—c—JI=F1-¢
z—c

3 Bome of the more difficult Integral evaluations are given in Appendix 1L1I.
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INTEGRALS
1 +1
fc g dz=— -gvaT4 f_l qo..d.’t:=-:—g-vaw
1 b +1 b
fc eadz= — 5hT} f_l pide=ghm
1 +1
f vadz = ab?T, f padz= —zzbzfg

1 b +1
fc opdz= — 5-0BT; f_l ppdzr=— gvﬁﬂ

1 b2, + :,
J; epdz=— 2_7‘T3T2 f_l ppdr= —%‘ﬁTl

1 b +1 b
L va(z—c)dz= — §vaT1 f_l ealz—c)dr= — soaca

1 b +1 b
fc ez —c)dr=—ZhT; L ¢i(@~c)de= —gher

1 ) +1
f pa(z—c)dz=ab?Tis f_l oa(@—c)de= &b Tr

1 b + b
[Coe-ade=~FosTy [ oste—c)de= ~ Yo,

b*8T;

1 bz . +1
fc ei(@—c)dz= —5-BT; f_l vi@—c)de=—3

CONSTANTS
T\= —%1,/1_—?(2 -I;cf) +¢ cos¢

To=c(1—¢%) — 1— (1 +cDcos™ e+ c(cosc)?
T.=— (% + c’> (cos™e)2+ -i—c V1—¢ cos™le(7+2¢%)

~ 51— (5ct+4)
T,= —cosl¢c+c/1—¢2
Ty= — (1 —¢®) — (cos'c)2+2¢c+/1— ¢ cos™¢
T5=T2
T;= —<%+02> cos“c+%cm(7+2c:’)
T3=—%1/1_—E_2(2c’+1)+ccos‘lc

1M1/ —) 1
T9_§ §<1/l—c2>3+aT4 ﬂé (—p+a,T4)

where p= —% (1/ 1—c">’
To=+1—¢c+cos™'¢
Tu=cosl¢c(1—2¢)++1—¢ (2—¢)
Te=+1—¢ (2+c)—cosl¢c (2c+1)

1
T13=§ [—Ti—(c—a) 7]

1 .1
T“ hand 1_6 + § ac

_ FORCES AND MOMENTS
The velocity potentials being known, we are able to

calculate local pressures and by integration to obtain

the forces and moments acting on the airfoil and
aileron.



416

Employing the extended Bernoulli Theorem for un-
steady flow, the local pressure is, except for a constant

w0
(B2
where w is the local velocity and ¢ the velocity poten-
tial at the point. Substituting w=v+%§ we obtain

ultimately for the pressure difference between the
upper and lower surface at =

2p< b"’+

where v is the constant velocity of the fluid relative to
the airfoil at infinity. Putting down the integrals for
the force on the entire airfoil, the moment on the flap

y

XY

F1GURE 3.—Conformal representation of the wing profile with referencs to the
clrcalatory flow.

around the hinge, and the moment on the entire air-
foil, we obtain by means of partial integrations

+1
P=—2b f_l sdz
Mo=—. B f l«,b(:r—c)d:o+2pvbflgod;z:
M=—2pbf o@—c)dz+2 pvbf odz

- 2,,z>2f_1 o(c—a)dz

Or, on introducing the individual velocity potentials
from page 5,

P=—pb? [pré+ wh— bras—vT'f — bTf] @
M= — pba[—vT,a— Tih+2Tba—1 vTZB—%TabB]

+ pub’[—vﬂa— T+ 2Tpb— }ruTsﬁ—;lr-T,bB]
= — pb? [Tm’a— QT+ ) boa+ 2Tt 2 T
+ (7—1r Ty T,) bob— - 6*T36+ Tiolh— leii] an
M= —pb’[—u‘v’a-l- .r(§+a2 bt T+ {Ti—Ts
—(c—a) T}bfo+ {—Tr— (c—a) 2 }b%B

—baxh— mk:l 1)

N .
gf\vbl"‘
)
8
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VELOCITY POTENTIALS, FORCES, AND MOMENTS
OF THE CIRCULATORY FLOW

In the following we shall determine the velocity
potentials and associated forces and moments due to a
surface of discontinuity of strength U extending along
the positive z axis from the wing to infinity. The
velocity potential of the flow around the circle (fig. 3)
resulting from the vortex element — AT at (Xp, 0) is

AT, Y a_ X
Pr= 2ﬂ_|:ta.n ‘X_Xo—ttm IX— :|
Xo
Car, . (mE+xY
tan™!
“ox

X"—(XO+E>X+ Y41

where (X, Y) are the coordinates of the variable
and X, is the coordinate of — AT on the z axis.

Introducing X,+ )i( =971,
0

or Xy=x,+ +/%*—1 on the z axis
and X=z and Y=+/1—22 on the circle
the equation becomes

poVI= T =1

1 Xy

Przg™= —

This expression gives the clockwise -circulation
around the airfoil due to the element — ATl at .

We have: p= —2p(b‘p+ 955

But, since the element — AT will now be regarded as
moving to the right relative to the airfoil with a
velocity v

Q¢ Q¢
ot -D—I;n '
Hence, p=— 2pv<b¢+
Further
T +xov1—x2
21 ¢ rmr—y(l-wmm) V-2 (1—zz)
AT oz V¥ (1—2%) (@*—1)
1+ 3
(1 —2x)
’ sl S S
V1i—2F @—2)
and
1 To Z
= VE I
25 O gep—mm) Ya=1 " (—za)
(1—zx)*
_A1=2 1
z3—1 (To— )
By addition:
b<p+ Q¢ AT otz

—b_:c _D—Igl:-é;: 1’1_’.732 ;xoz__l
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To obtain the force on the aileron, we need the
integral

bga d¢ _ 1
f bx aZo dz=

- Zetz
'on -\/1—5
1—:c

=-——-|: Zo 5 c03 L+

27 Vrd— .‘/

_AT[ o o 1/1—0*]
o ——mcos ct-—F—

Thus, for the force on the aileron
- E To -1 1 — >
APcl pvb p= (Wcos G+"/x—2—_—1h\/1 é or
APy= — b—I: cos“c—w,/ )

Io+1
170—1

Integrated, with AT = Udz,
__md —1,_ _[T— f " __To
Pu=—22 (costo—T=4) [ s Uz,

V1= [ "2 U, |
1 Ty 1

for c=—1 we obtain the expression for P, the force
on the whole airfoil

aw

Since U is considered statlonary with respect to the
fluid elements

U=1(vt—2,)

where ¢ is the time since the beginning of the motion.
U is thus a function of the distance from the location
of the first vortex element or, referred to a system
moving with the fluid, U is stationary in value.
Similarly we obtain for the moment on the aileron

' @—¢) (@ot2)

[[(+90) e-aar-g2 Pyt
- gi«/z |: 1,/_2:’+'1:1’/-1_$z cy/1—22
+ -2-—a:oc>cos"1z1

324—];:—_1[(%-'.6

Ly
1 -1
+§ 1—2z4 Jcos™ ¢

= +%[ﬁL(m—c cos“c)

1
§

(cos“c c1=2 )J

417
Finally

A= — o2 ﬁg{ﬂ(uﬁ)

—cos“c(c +%>]+%‘/z°+l (cosc—cy1—¢%) :I

Putting AT'= Udz, and integrating

e (5=3(1+5)

—cos™ ¢ (c +§>}ﬁ VT—T Udz,
+ (cos~'c— c/T—¢%) %J;m Zotl ——1 Udzo | (V)

Further, for the moment on the entire airfoil around @

+1 b(p __AT_ 1 z
f 2t ( ~9dz Vz 2—1l:<x°+2 a)’“l"xz
+1
+(%—a:oa> cos™! :c:l e

and

2wg—1<1 °’°"'>

1

AM,= —pvb’AI“/=-

Integrated, this becomes

® l—xoa
M,.=—pvb 1/—Ud:l:o

wf] 1 1
z____pvbaf §+§£0 _z0<a+§>

Vai—1  zd—1

=—pvb2 {\/Eﬁ ( }deo VD)

THE MAGNITUDE OF THE CIRCULATION

Udz,

The magnitude of the circulation is determined by
the Kutta condition, which requires that no infinite
velocities exist at the trailing edge,
or,at z=1

fe} .
s (et 0ot 0i+ oo+ st @) = finite
oz

Introducing the values of ¢., etc. from page 5 and

oy from g‘—o page 6 gives the important relation:

2f Vaot 1 Ud:comva+7b+b<——a,>
kis

TIO

Lioyg 4 3105 (VID)

This relation must be satisfied to comply with the
Kutta condition, which states that the flow shall leave
the airfoil at the trailing edge.

It is observed that the relation reduces to that of the
Kutta condition for stationary flow on putting 2=
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and in subsequence omitting the variable parameters
é, B, and j.
Let us write

_1- @
271"1

Introduced in (IV)

Tot1l Udro=va+ib+b<%— 'l)('z

Io‘_‘
Ty

Tm

v8+b5 =@

f 2o — lUd:':o

- “’”’”be ‘/z0+1
xo'—l

Mg= —2ovh? (1/1—02(1 +%>—c,os;“l c(c +—512>>X

from (V)

J W/QJL)—I—L'UdIO +~<cos“c 01,/1_;’>

$0+1
f ‘Jzo_ 1 Udz,

.80 -

.60

.40

.20 ——
-¢ A4

— 1 ] -G

0 .2.4".8':0 12 16 12/0]{ 24 28 32 36 40

Fi0uRE 4.—The functlons Fand G against +-

and from (VI)

f 2 Udn,

M= —2mprb? é— e +1 ¢

f \/ 2= Udaz,

Introducing
$o+ 1
ﬁ 2ot U,
we obtain finally
P=—2p0bxCQ (VIIL)

Mg= —200b® I:(w,/—l——c’(l + %) —cos™! c(c +%>>0
+3 (cos™ ¢~ ch_—?)] Q= — b (TuCO—THQ (IX)

Itla=..:rpv§’|:(a+%> c- —21-]Q

X)
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where @ is given above and C= C(k) will be treated in
the following section.

VALUE OF THE FUNCTION C (k)

Put U= er i[k (%—ro>+¢]
where s=vf (s— =), the distance from the first vortex
element to the airfoil, and % a positive constant deter-
mining the wave length,

then
® 350 —itz
e~ *%odz,
Il 7% +1 -tkz

1 1,/_— odzo
These integrals are known, see next part, formulas
XIV)—(XVII) and we obtain?

—'%JI-I_ing

(XTI

— 41T,
AR 0 A

O(k) TJ ﬂ'Y i i =
I 1__ 0+?'_Yl_7'3']0

i )[— (Si+ Yo — i —
N+ Yo)*+ (X1~ Jo)*

Wi+ Yo) + Yi(¥i— o)
(1 + Yo)2+ (X1 —o)*

_;HWh+ Yo) —Ji(Fi— o)
1+ Xo)* + (X1 — o)

JI(JI + Yo)"‘ YI(YI_JO)
(Ji+ Yo) + (Y1 —Jo)*

Y\ Yo+ JiJo
S ALEN WAL (XI1D)

These functions, which are of fundamental import-
ance in the theory of the oscillating airfoil are given

Jo)]

=F+iG

where
F =

(X11)

G=—

graphically against the argument % in figure 4.
SOLUTION OF THE DEFINITE INTEGRALS IN C BY MEANS OF BESSEL
FUNCTION
We have
K, (2) =f —sc08bt oosh nt di
(Formula (34), p. 51—Gray, Mathews

& MacRobert: Treatise on Bessel
Functions. London, 1922)

where o
By (t)=¢7 Gyt
(Eq. (28), sec. 3, p. 23, same reference)
and : .
6.0 = -To@+[log2-7+5 @
but

Y, @) =5 Ya @) + (log 2~ ) Jx (2)

(where Y,.(x) is from N. Nielsen:
Handbuch der Theorie der Cylinder-
funktionen. ILeipzig, 1904).

3 This may also be expressed In Minkel functions, C'_-ﬁi-ﬁ’)lle(i)
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Thus,
Gu(2) = ~ 57, @)~z @)]
We have
K —'k)-=f°° “m‘“dt=fm£—d:c
0( * [ ¢ 1 -\/2?2—1
or - g
T T ®cos kxdx . (= sin kxdz
—-EY.,(k)+z§Jo(k)=£ 2 ot +z£ S
Thus,
®cos kxdx T
J =S T (XIV)
°gin kxdx =
! =5 h® XV)
Further,
i w© ®ol T dz
K (—ik) = [ oot coshdt= | =
G () =—ig Vi () —5 i (®)
mﬁmwfa.:Tl' (cos kx -1 sin kx) dx
Thus,
®x cos kxdz .
X 1/?_—1 l"_é"']l(k) (X;I)
®x sin kxdzx T
. ﬁ"’_gyl(k) (XVII)

TOTAL AERODYNAMIC FORCES AND MOMENTS
TOTAL FORCE
From equations (I) and (VIII) we obtain

P= — pb¥(vma+ wh— wbaa— oT.f— T1bF)
- Qﬂ'prO[va+ h+ b(% - >&+$Tmuﬁ
+b5-Tub) XVITI)
TOTAL MOMENTS

From equations (II) and (IX) we obtain similarly
My=— pbﬂ 2T~ T+ T(a—3 ) obat 2Tibta
+ 2 B(Ts— TiTi) — 5 bBT\ Ty — = Tob%
- leﬁ:l— PO et b3~ a )

+ 2T+ b5-Tuf (XIX)

419
From equations (III) and (X)
M,=— pb{ﬂ 5- a)vbéz + wa(é + a’>&
+ (T + T)v*B
+ (T1 Ty (c—a)Ti+ %Tu>vbB
- (T, +(c—a) Tl)pfﬁ— avrbii:l
+ 2p0b21r<a+%>0{ vat+h+ b(% - )a

1 1 -
+7—1_T10‘Dﬁ + bZ‘rTuﬁ} XX)

DIFFERENTIAL EQUATIONS OF MOTION

Expressing the equilibrium of the moments about @
of the entire airfoil, of the moments on the aileron
about ¢, and of the vertical forces, we obtain, respec-
tively, the following three equations:

a: —La—IB—b(c—a)Ssf— Suh— aCoat M,=0
B: *IpB—Ip&—b(c—a)&Sﬁ—ﬁSp—ﬁOp'l‘Mp:“O
h: — kM — &S.—BSs—hCh+P=0

Rearranged:

a: &I+ BIs+b(c— a)Sp) + hS,+ aCy— M,=0
B: &I+ b(c—a)Ss) + BIz+ hSs+ BCs— Mg=0
h:  &S.+BSs+hM4+10,—P=0

The constants are defined as follows:

P, mass of air per unit of volume.

b, half chord of wing.

M, mass of wing per unit of length.

S.,Ss. static moments of wing (in slugs-feet) per

unit length of wing-aileron and aileron,
respectively. The former is referred to
the axis a; the latter, to the hinge c.
moments of inertia per unit length of
- wing-aileron and aileron about a and ¢,
respectively.
C., torsional stiffness of wing around a, cor-
responding to unit length.
Cs, torsional stiffness of aileron around ¢, cor-
responding to unit length.
Ch, stiffness of wing in deflection, correspond-
ing to unit length.

DEFINITION OF PARAMETERS USED IN EQUATIONS

the ratio of the mass of & cylinder of air of
a diameter equal to the chord of the
wing to the mass of the wing, both taken
for equal length along span.

A
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%g the radius of gyration divided by b.

Tre=

Te le;b’ the center of gravity distance of the wing
from a, divided by b.

W= gf-: the frequency of torsional vibration

around a.
rp=‘—‘/ ﬂggy reduced radius of gyration of aileron

divided by &, that is, the radius at
which the entire mass of the airfoil
would have to be concentrated to give
the moment of inertia of the aileron Ij.
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reduced center of gravity distance from c.

=_’l

Mb
wﬁ=\/ _fg’ frequency of torsional vibration of aileron

around ¢.
o=y /ﬂ—} frequency of wing in deflection.

FINAL EQUATIONS IN NONDIMENSIONAL FORM

On introducing the quantities M., Mjp, and P,
replacing Ty and 7Ty from page 5, and reducing to
nondimensional form, we obtain the following system
of equations:

I: 2+x< +a,>]+a5 (2 >+a—§+ﬁ[rﬁ+(c a)xﬁ——x—(c a) = ]+ me-l:——Zp (——a> :l

Jor il

A)
+ﬁx§;;1r(T,+Tm)+72 za—a,c)% ( 2)”0(" ”—“+%+ 5
®) & i+ = a)s—r - - +a(p—Ti— 3T g 24+ B(ri~ 20T~ 5 TiTucgn
+ﬁ[m,+w,b2x(T5 T4Tm):|+7i<a:g-—-}_le>%+%xg%@ ”T"+%+<% >a+1—"2§ﬁ+€—:3]=0
(©) &(xa—xa)-l-d%x+3<xp—%_T1x)—ﬁ%T4x%+h(1+x)%+h%%

T Tu, ]

0o b (1) Tut gy Ty

+2K‘T b++

SOLUTION OF EQUATIONS

As mentioned in the introduction, we shall only have
to specify the conditions under which an unstable
equilibrium may exist, no general solution being
needed. We shall therefore introduce the variables at
once as sine functions of the distance 8 or, in complex

form with % as an auxiliary parameter, giving the
ratio of the wave length to 2 times the half chord &:

2

kg
a=ag
ﬁ: ﬁog, (k-i—‘l'y’)

and h=ge' (E57%)

where & is the distance from the airfoil to the first
vortex element, g?s=v, and ®, and @, are phase angles
of 8 and % with respect to c.

=)

Having introduced these quantities in our system of
2
equations, we shall divide through by <%k> .

We observe that the velocity » is then contained in
only one term of each equation. We shall consider
this term containing v as the unknown parameter £.X.
To distinguish terms containing X we shall employ a
bar; terms without bars do not contain X,

‘We shall resort to the following notation, taking care
to retain a perfectly cyclic arrangement. Let the
letter A refer to the coefficients in the first equation
not containing C(k) or X, B to similar coefficients
of the second equation, and C to those in the third
equation. Let the first subscript « refer to the first
variable «, the subscript g8 to the second, and & to the
third. ILet the second subscripts 1, 2, 3 refer to the
second derivative, the first derivative, and the argu-
ment of each variable, respectively. A, thus refers
to the coefficient in the first equation associated with

the second derivative of a and not containing O(k) or
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X; O)3 to the constant in the third equation attached to
h, ete. These coefficients * are as follows:

m1=r:z+<%+a’>

e
Agi=0
=TTy om0y (2-T)

Aa=] 2= (3-0)7.]
AﬁS':';(T4+I'10)
Am—-%-—a
Am‘“o
Ap=0
Ty oo (% L) (-
By="2-T+(c—a) (* (=4p)
1
Baa='%,<P“‘T1—§T4>
Ba;=0
3
1
Bpln%—’?Ts .
1
Bﬁz="‘2?T4Tu
Bﬁs“’j}a(TB_ﬂTm)
Bhln%ﬁ__Tl
Bn'=0
Bh3=0

$The factor % or 11—, 15 not included In these constants. See the expressions for
the R's and I's on next page.
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The solution of the instability problem as contained
in the system of three equations A, B, and C is given
by the vanishing of & third-order determinant of com-
plex numbers representing the coefficients. The solu-
tion of particular subcases of two degrees of freedom
is given by the minors involving the particular co-
efficients. We shall denote the case forsion-aileron
(e, B) as case 3, aileron-deflection (B, h) as case 2, and
deflection-torsion (h, a) as case 1. The determinant
form of the solution is given in the major case and in
the three possible subcases, respectively, by:

Raa'l"iIaay Raﬂ_l'iIa.B; Ra.h+'iIak
D= |Ryatilsa, Rop+ilss, Ront+ilen| =0

Reotilia, Reg+iles, Bentilen
and ) . .

Mo ol B =0 O
Boom [priin it o o
By Bl Berbille] Ly

REAL EQUATIONS IMAGINARY EQUATIONS
Bl _ | elon| o (B, Tl | o e
Boltn| _[Talin| | Bolin] I | o Gusns
g:f?:: - ;:I:: =0 ?;f:a + II;:SE; =0 Case 1

Nore.—Terms with bars contaln X; terms without bars do not contain X,
The 9 quantities R, Fqs, otc., refer to the real parts
and the 9 quantities l,., f.s, etc., to the imaginary
parts of the coefficients of the 3 variables «, 8, and %
in the 3 equations A, B, C on page 10. Denoting the
coefficients of &, &, and « in the first equation by p,
) and )

. 1 . b b\?
Raa+7'Iaa=;[_:p+7’gE+r<Fv> :I

which, separated in real and imaginery parts, g1ves
the quantities R,, and I,,. Similarly, the remaining
quantities B and I are obtained. They are all func-
tions of & or C(k). The terms with bars R.., R,
and B, are seen to be the only ones containing the
unknown X. The quantities @ and X will be defined
shortly. The quantities B and I are given in the
following list:
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Raa=—Aa1+QaX+71;2(%+a>[<%— )G—TICF] (1)
Rop=—AptjpAn+3t a+%>|:TuG—2%TwF:| @)

| Bar=—4n +715 2 (a, +%) @ @)
(Ryom—Bu— 122 [(2 S F] @
{ Rogm—Bp+ 3Bt X — 0 "[TuG ‘7Tw—F:| )
Bov=—Br—32@ ®)
Re——Cu— 2[ ——a)G—%F] 7
Rog=—Cp— —[THG——:ZTIO%F] (@)
A ch-=—0,,1+9bX—7320 9

(= =g 2(o+2) |G- )P +7 G]‘A"“] (4

L= —%E(HE)(THFHETNG)—AJM] 12)

Lon=s —%2(@+%>F (13)
I,,,=%|:"%[ 1_ >F+7EG}+B,3] (14
Lp=1 %—;(THF+2-ETIOG>+BB,] (15)
In=p 2 _ (e
L. 7:[2[(2 >F+ } +0d] a7

[1 (THF+‘>7;T10G>+032] (18)
\'I -Z2F (19)

The solution as given by the three-row determinant
shall be written explicitly in X. We are immediately
able to put down for the general case & cubic equation
in X with complex coefficients and can easily segregate
the three subcases. The quantity D is as before the
value of the determinant, but with the term containing
X missing. The quantities M,., Mys, and M., are
the minors of the elements in the diagonal squares
ac, b8, and ch, respectively. They are expressed ex-
plicitly in terms of B and I under the subcases treated

in the following paragraphs.
At X Ay Ao

D=| 4 Apt %X An =0
Aca A Aat+0X

where A.o=R,.}+1l,. etc.
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Complex cubic equation in X:

Qa0 X3+ (Q.28 A+ 2 A oat Qe dss) XZ
+ (QuMoat Mg+ UM ) X+ D=0

Case 3, (a, B):

22X+ (U doptQpAoa) X+ M=0

Case 2, (8, h):

QX2+ (U A s+ U dog) X+ Moa=0

Case 1, (k, ):

Q. X2+ (QbAaa+9aAch)X+Mb3=0

o210
X ( ) (br'wr>

Ohb brr")r
X =R <w,r,>

xol <br,wr>

We are at liberty to introduce the reference param-
eters o, and r,, and the convention adopted is: w, is
the last w in cyclic order in each of the subcases 3, 2,
and 1.

Then Q,= (

(XXI)

(XXII)

(XXTII)

XXIV)
Q. X=

and finally

Wyl
Wt 17041

Case 3, Qa=<“i" and Q=1
wgr'g

> and Qe 1=1, thus for

3
Case 2, 93=<—p—-‘-’wwr ) and Q=1
]

2
and 2,=1

@
Case 1, Q":(w.,:-

To treat the general case of three degrees of freedom
(equation (XX1)), it is observed that the real part
of the equation is of third degree while the imaginary
part furnishes an equation of second degree. The
problem is to find values of X satisfying both equa-
tions. We shall adopt the following procedure: Plot

graphically X aga.inst%: for both equations. The points
of intersection are the solutions. We are only con-
cerned with positive values of %E and positive values of

X. Observe that we do not have to solve for %, but
may reverse the process by choosing a number of
values of £ and solve for X. The plotting of X

against 712 for the second-degree equation is simple

enough, whereas the task of course is somewhat more
laborious for the third-degree equation. However,
the general case is of less practical importance than
are the three subcases. The equation simplifies con-
siderably, becoming of second degree in X,
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We shall now proceed to consider these three sub-
cases. By virtue of the cyclic arrangement, we need
only consider the first case (a, 8). The complex
quadratic equations (XXII)-(XXIV) all resolve
themselves into two independent statements, which
we shall for convenience denote ‘Imaginary equa-
tion” and ‘‘Real equation”, the former being of first
and the latter of second degree in X. All constants
are to be resolved into their real and imaginary parts,
denoted by an upper index R or I, respectively.

Lot M,e=M%,,+1M*, and let similar expressions
denote M,z and M,
Case 3, (¢,8). Separating equation (XXII) we obtain.

(1) Imaginary equation:
(Qolps+Qpl o) X+ M7 =0

Mo

X= - QaIbB—l_ QpIaa

(2) Real equation:
2R X*+ (Bt QRoa) X+ MFa=0
Eliminating X we get
a2 (M 03)* — (Bop+URaa) (Qulvp+Qploa) Mo
+ MPor(Qal s+l 0a)*=0

By the convention adopted we have in this case:

=) G)
T (OF:] T8 !

Arranging the equation in powers of 2, we have:
Qo’[— M ex(Boplnp) + ME e Lo+ Qu (M 1) *
_M:h (RaaIbﬂ_I_IaaRbﬁ) +2WMIaaIbﬁ]
F =M aBoaloatME 17 =0
But we have
(M o3)*— M i (BoeLrptToalng)
=MIM[RaaIbﬂ'—RaﬁIba'l'RbﬁIaa—-RbaIaB—RaaIbB_-RbﬂIaa]
= —MIC«’l (RaﬂIba+IaﬂRba)

Finally, the equation for Case 3 (e, 8) becomes:

Qaz(MRcthﬁa—M:bRbﬁIbﬁ) +Qa[_Mck(RaﬁIba+IaﬂRba)
+2MRMIaaIbﬂ]+MRMIaa2—MchRaaIaa=0 (XXV)

where

and Q=1

Wy=0wg,

M? g =RouBrg—BaosRoa—ToalostLoplra
M y=Roalsp—RoplratILsaBos— IopRoa

The remaining cases may be obtained by cyeclic
rearrangement:

601—35——28
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, 2 ‘
Case 2, (ﬁ,h) Qg=(zo—ﬁ> Tﬂz 2,=1
A

QM= — MRl ) + Qe — Moa(Ronl s+ IinBes)
+ 2M§aIbﬁIck] +M¢Ibﬂg_MIacRbBIbﬂ= 0 (XXVI)

Wr== Wy

where M?%,,=RysRey— RBysnRes— Inplont1snl .5
Ma=RDﬁId_RthCﬂ+IbﬁRd_Ith$
3
Case 1, (he)  woreuwe 9,=<? L e

B (Miploa®— MipRoaloa) + Ol — Mip(Bealant IoaRen)
F2Mipl e Loa] + MEple® — MisRenl =0 (XXVII)

MRbB=R=bRaa—RcaRah—IchIaa+IcaIah
Mb,&:RchIaa_RcaIah'l"[chaa_IwRah
Equations (XXV), (XXVI), and (XXVII) thus
give the solutions of the cases: torsion-aileron, aileron-
deflection, and deflection-torsion, respectively. The
quantity @ may immediately be plotted against

where

715 for any value of the independent parameters.

The coefficients in the equations are all given in terms
of R and I, which quantities have been defined above.
Routine calculations and graphs giving Q against

1 are contained in Appendix T and Appendix II.
%

Knowing related values of @ and %, X is immediately

expressed as a function of € by means of the first-
degree equation. The definition of X and Q for each
subcase is given above. The cyclic arrangement of
all quantities is very convenient as it permits identical
treatment of the three subcases.

It shall finally be repeated that the above solutions
represent the border case of unstable equilibrium.
The plot of X against Q gives a boundary curve between
the stable and the unstable regions in the XQ plane.

It is preferable, however, to plot the quantity 71? IX

instead of X, since this quantity is proportional to the
square of the flutter speed.. The stable area can easily
be identified by inspection as it will contain the axis

I?];X}:O, if the combination is stable for zero velocity.

LangLEY MEMORIAL AERONAUTICAL LLABORATORY,
NaTtioNarL ApvisorY COMMITTEE FOR ABRONAUTICS,
Lanarey Frevo, Va., May 2, 1934.



APPENDIX I

PROCEDURE IN SOLVING

(1) Determine the R’s and I’s, nine of each for a
major case of three degrees of freedom, or those per-
taining to a particular subcase, 4 R’s and 4 I's. Refer
to the following for the R’s and I’s involved in each
case:

The numerals 1 to 9 and 11 to 19 are used for con-
venience.

(gMajor case) Three
egrees of freedom
1 R.. I. 11
2 Ry Ips 12
3 Rg I 13
4 Ry L. 14
5 Ry I 15
6 Rbk Iw, 16
7 R I. 17
8 Ry I, 18
9 Ry I, 19
(Case 38) Torsional-

aileron (e, B)
1 R.. I.. 11
2 Ry Ipg 12
4 Rba Ibq 14:
5 Ry Ly 15

(Case 2) Aileron-
deflection (8, &)
5 Ry Iy 15
6 -Rbh Ibk 16
8 R I 18
9 R, Is 19
(Case 1) Deflection-

torsion (&, «)
7 R I.. 17
9 R, I, 19
1 B, I, 11
3 Ra Iz 13

It has been found convenient to split the R’s in two
parts R=R’+R'", the former being independent of

the a.rgument%. The quantities I and R’/ are func-
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NUMERICAL EXAMPLES

tions of the two independent parameters ¢ and ¢ only.?
The formulas are given in the following list.

R”aa=l2<a+%>[<—;——a>0'—€} (1)
By i H @ o 3+ (a+3)(Tu6-270F)| @
R"a,,=—2(a+§>'a @)

- £3(-e-H

By 3 {21003 T0F )4 L= TT0)] )
1T

Bry=—1l2g ©)
B =~ 32{(3-0)o—%] 7
B 5= —p2(TuG—2T0 k) ®)
R 0= —726 ®)
1. =—2<a+%)[(%—a>ﬁ'+—};0]+%—a (1)
T —l[<a+%> <T11F+%T,OG>+2P (12)
2-9)7]
I —2(a+§>F (13)
Lo=22{(3-0) Py o+ (p—Tl—%ﬂ) (14)
Where p= —3 (1—c)°"
Ly gz T (TP +37308) — T3 (15)
Ion L "F (18)
Ic,,=z[ 1 )F—l— G}+1 (17)
Icgmi{(TuF+7ETmG>-TT4} (18)
In=2F (19)

P A —
s The quantities I given In the appendix and used in the followlng oaloulauons

areseentodlﬂertromthsrsgivanlnthobodyotthspaperbythefaotor E It

mnybenoﬂeadthatthisfactor drops out in the first-degree equations,



GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF FLUTTER

Choosing certain values of @ and ¢ and employing
the values of the 1”s given by the formulas of the report
(p. 5) or in table I and also using the values of F and
@ (formulas (XIT) and (XIIT)) or table II, we evaluate

the quantities 1 and R’/ for a certain number of%

values. The results of this evaluation are given in

tables ITI and IV, which have been worked out for
a=0,—0.2, and—0.4, and for ¢=0.5 and ¢=0. The

range of %is from 0 to 40. These tables save the work

of calculating the I’s and R’/’s for almost all cases of
practical importance. Interpolation may be used for
intermediate values. This leaves the quantities R’ to

be determined. These, being independent of %:-; are as

o result easy to obtain. Their values, using the same
gystem of numbers for identification, and referring to
the definition of the original independent variables on
pages 9 and 10, are given as follows:

. (1
Bm - (L) W

K

’ ,=_."_ﬂ;2_ e I Y41
R p (c a)x+1r+(c a,)ﬂ_ (2)

Rua=—"+a 3)
R/ yo=same as B’ 4)
1
Ryp=-" 4T, (5)
1
R'y=—22421, (6)
R’ ..=same as R’ )
R’ g=same as R’y 8)
1
Ra=—i—1 ©)

Because of the symmetrical arrangement in the
determinant, the 9 quantities are seen to reduce to
6 quantities to be calculated. It is very fortunate,
indeed, that all the remaining variables segregate them-

gelves in the 6 values of B’ which are independent of 715:

while the more complicated I and R’/ are functions
solely of ¢ and ¢. In order to solve any problem it is
therefore only necessary to refer to tables ITI and IV
and then to calculate the 6 values of B’.

The quantities (1) to (9) and (11) to (19) thus

having been determined, the plot of @ against %: which

constitutes our method of solution, is obtained by
solving the equation aQ®*+bQ+c=0. The constants
a, b, and ¢ are obtained automatically by computation
according to the following scheme:
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Case 3
Find products 1.5 2.4 11.15 12.14
Then M=o=1.5—2.4—75(11.15—12.14)
Find products 1.15 2.14 11.5 12.4

Then M?,=1.15—2.14+11.5—12.4
and a=M%,(15)*— M?,,(5.15)
b=—M74(2.14+12.4) + MP 4 (11.15)

c=MB,(11)3— M7, (1.11) Find @,
12,5411
Solution: e e,
Similarly
Case 2
5.9 6.8 15.19 16.18
MP,=5.9—6.8— 15(15.19—16.18)
5.19 6.18 15.9 16.8
M,.=5.19—6.18-+15.9—16.8
a=M?,.(19)*—M7,.(9.19)
b=—DM",.(6.18—16.8) —2M%,,(15.19)
c=M?,,(15)*—M7,.(5.15) Find 5
1 _0,(19)+15
X M.
and
Case 1
9.1 7.3 19.11 17.13
MEp=9.1—73 —-%(19.11—17.13)
9.11 7.13 19.1 17.3

M=9.11—7.13419.1—17.3
a~=mbﬂ(11)2—Mbp(1.ll)
b=—M7,5(7.134+17.3) + M%,5(19.11)
C=MRbp(19)2—Mbp(9.19) Find Q

1 9,(11)419

X My

Wel' o
wgr's

2
0y is defined as (%22) for case 2; and

2
Q, is defined as for case 3;

2
Q, is defined as (ww: > for case 1.
.. 1. vk \? ..
The quantity sl 5o by definition.
Since both © and % are calculated for each value of

%:., we may plot 7}3 )l( directly as a function of Q. This

quantity, which is proportional to the square of the
flutter speed, represents the solution.
We shall sometimes use the square root of the above

quantity, viz,ﬂllz \/ %:: bﬁ,:,’ and will denote this
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quantity by F, which we shall term the ““flutter factor”’
The flutter velocity is consequently obtained as

_ b"-’rrr
=F
bwrrr

Since F' is nondimensional, the quantity r
K
obviously be a velocity. It is useful to establish the

significance of this velocity, with reference to which
the flutter speed, so to speak, is measured. Observing

must

2
that & =E£—£— and that the stiffness in case 1 is given by

- Ca : ; eian.
Wa = ,\/ M this reference velocity may be written:

v bw,.r., \/
R +k )

moveibt=C,
The velocity v is thus the velocity at which the total

force on the airfoil =prg?2b attacking with an armg
equals the torsional stiffness C, of the wing. This
staternent means, in case 1, that the reference velocity
used is equal to the ‘“divergence’” velocity obtained
with the torsional axis in the middle of the chord. This
velocity is considerably smaller than the usual diver-
gence velocity, which may be expressed as

UD’=‘031
§+a

where ¢ ranges from 0 to—%- We may thus express

the flutter velocity as
vp=vpF
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In case 3 the reference velocity has a similar signifi-
cance, that is, it is the velocity at which the entire lift of

the airfoil attacking with a levemge% b equals numeri-

cally the torsional stiffness O of the aileron or movable
tail surface.

In case 2, no suitable or useful significance of the
reference velocity is available.

TABLE I.—VALUES OF T

c=1 cml4 c=20 cm—34 o]
0 —0.1250 | —0.6667 | —L.6007 | —3.1410
0 —0.2103 | —1.5707 | —4.83506 | —9.8607
0 —.06313 | —.8084 | —3.8375 | ~11.1034
0 —.6142 | —L 5708 | —2.5274 | —3.1416
] —. 9308 | —3.4674 | —6.0503 | -—0.8007
0 —0.2103 | —1.5707 | —4.8368 | —9.8097
0 .0132 —. 1064 | —1.1013 | —3.6343
0 . 0003 —.3333 | —1.4805 | —3.1416
0 19132 2. 5708 2, 9604 3. 1410
0 1. 2090 3. 5708 8. 3538 0,4248
0 . 07068 . 4202 1, 2000 3.1410

TABLE II.—TABLE OF THE BESSEL FUNCTIONS Jo, Ji
Ye, Y1 AND THE FUNCTIONS F AND @

S YOV (Vi— i
FO= S TorF (V1= Tt

Vi ¥ =i (¥i— TG

‘G“)'_(‘.#Yom(y&;rz.-.r v

t % Jo Ji Yo Y F 7
© [} 060000
10 1o |[—0.2459 | 0.0435 0. 0557 0.2460 | .5000 | 0,0120
6 1503 | —. 2767 | —.2882 | --.17501 .5018 | .0207
4 —. 3972 | —~.0860 | —.0170 L3970 .56037 | .0308
2 . 2239 . 6767 5104 -, 1071 5120 L0877
1 7652 | .4401 oss2 | —.7813 | L5395 | L1003
.8 12{ . 8463 3688 | —.0868 —.9780 6641 | (1165
.6 138 . 9120 2867 —. 3085 | —-1.2604| .56788 | .1378
.6 . 9385 2423 | —. 4444 | —1.4714 | .6030 | .151
.4 2 . 9604 1060 | —.6060 | —1.7808 | .0246 | .108
.3 3 . 9776 1483 | —.8072| —2.2020 | .6650 | .180
.2 . 9000 —1.0810 | —3.3235| .7276 | .1830
.1 10 0975 400 | —1.5342 | ~7.0317 ] .8457 | .1020
.05 20 011 .132
.025 40 . 806 090
0 © ---e] 1.OOO | O
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TABLE OI.—VALUES OF R
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1
E 0 Yo ¥ K » 1 1% 135 2 214 315 5 10 20 40
[ a
—0. 00564 —0. 01568 —0. 03520(—0. 14265/ —0. —0. —L 72380 —2. —4.11000] —7.68720|—18. 68150| —85.38300] —385. 72000]—1, 528. 2000
R'ea o —.9 —.00353) —, 00981 —,02208| —. - —. 58061|—1. 031581 —L 57404 —2 515801 —4. 63430{—1L 31010] —6L 42400] —210,74900] —017.8520
-4 —. 00123/ —, 00341| —.00767| —. - - —.36305) —. 3676) —.86520) —1. 63640) —3.80774] —17.20670) —73.35520) —305.9280
o —.00163| —. 00452 —. 01020] —. 04175 —. 18016] —. - —.87212—1.4 —2.84088] —7.46300] —38.20050] —172.38380] —741. 7072
0 —2 0 .00030{ .00033} .00184] .00670 .0192% . .01629] —. 01400 — —. 20517 —1. —10.24500) —52.40020{ —211.3664
- -4 .00222 .00617] .0 06531 21861 .33014] .6o408] .84414] 130385 228914 4 17.804 67.38320)  269.0848
]
‘ od o .ooossl . .00510] .01032{ .08418 .08876] .12176] .1226¢, . —.02000] —. —10. -5 1 —268. 7236
o5 —2 0 .00214 . .01 mosaw] . .31 .53062)  .73222{ L0233 L8l 3 10.147 3L 49 101, 6340
—4| o .om3s7 . .021 . .84381) . .64336] 1347620 2.00100] 3.66013] & 120. 897 475.2502
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APPENDIX II

NUMERICAL CALCULATIONS

A number of routine examples have been worked out
to illustrate typical results. A ‘“‘standard’ case has
been chosen, represented by the following constants:

k=0.1, ¢=0.5, a=—0.4, £,=0.2,
r2=0.25, zp= 8-1—0’ T8 ﬂl_(li—O

Way wg, w; variable.

We will show the results of a numerical computation
of the three possible subcases in succession.

/60 "
/
e
/20
a, =
80f]
40 e

o N L2 .3 4 & 7 8 .9 10

~)
Lk
F1GURE 5.—-Case 3, Torsion-alleron («, §): Standard case. Showing O« agalmt-{—‘
Case 3, Torsion-aileron («,8): Figure 5 shows the Q.

against "IlE relation and figure 6 the final curve

3 3
“""“) =40 3‘!)
wgrs wg,

v \* .
F=¢ wm;b) against Q.=

20
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2
F \\
8 \
\ %
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S~ L~
o 20 40 60 80 [00 120 140 /60 180
{4
F1GURE 6.—Case 8, Torslion-alleron (a, S): Btandard case. Showing flutter factor
F against Qa.

Case 2, Aileron-flexure (B, k): Figure 7 shows the

2
Qs against 71:— relation® and figure 8 the final curvex a%))
hY

ninst Qoe( FEY L (@8Y
ﬁg b Qﬁ (w;,) 160 Wy

¢ It Is realired that conslderable care must be exerclsed to get thess curves reason-
bly acourate.

428

The heavy line shows the standard case, while the
remaining curves show the effect of a change in the

1 1
value of 75 to 10 and 160°

Case 1, Flexure-torsion (k, «): Figure 9 shows again

N

o012 v N
% 2)/160 ~-xg=1/40
O\ |/ \®
.008 » " \
@) &) \-~x,,=1/80\

fg =0
A
3 \\‘::
"-’l\
-.004 Y
~005; / 2 3 4
Uk

FIGURE 7.—Case 2, Atleron-deflection (8, A): (s) Standard ease. (b), (¢}, (d) indieato
dependency onzp. Case (d), zp=—0.004, reduces to a point,

the 2, against ;‘Erelation and figure 10 the final result

» 2 . wy 2 ‘:’_h_ 2
“(warab> against 2, (wm:) 4(%

Case 1, which is of importance in the propeller theory,
has been treated in more detail. The quantity 'shown

. . v
in the figures is +k -
Figure 11 shows the dependency on:—"ng—;;

figure 12 shows the dependency on the location of the
axis a; figure 13 shows the dependency on the radius of
gyration r.=r; and figure 14 shows the dependency
on the location of the center of gravity =z, for three
different combinations of constants.

EXPERIMENTAL RESULTS

Detailed discussion of the experimental work will not
be given in this paper, but shall be reserved for a later
report. The experiments given in the following are
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restricted to wings of a large aspect ratio, arranged with
two or three degrees of freedom in accordance with the

/4 :
AN
12N
\\
. N
(@ ®
N
.8 ™
Xy=1/680
Fe o 2/ /
.6 N 7
(s 1/20
4 Unsrable
~ 4
2 ] /)
NS
- A Ol 2 =1/160
0 0z 004 005 005 00 .02 0K
8

F1auRE 8,—Case 2, Alleron-deflection (8, A): Final curves giving flutter factor ¥
against Qp corresponding to cases shown In figure 7.

theoretical cases. The wing is free to move parallel to
itself in a vertical direction (&); is equipped with an

/120
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80

&80

Qo

4.0/

20

-20 !

0 2 4 6 a 10
Lk

Fi0URE 0,—Case 1, Flexure-torson (A, «): Standard case. Showing 2 against-}-

axis in roller bearings at (a) (fig. 2) for torsion, and
with an aileron hinged at (¢). Variable or exchange-
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able springs restrain the wing to its equilibrium
position.

i
1.0% \

\ Ve

2 \\ £
\ ,/
\\._.//
o < 8 12 16 20
. Qn
F1aURE 10.—Casse 1, Flexure-torsion (B, a): Standard case. Showing flutter factor
F against Qa.

We shall present results obtained on two wings, both
of symmetrical cross section 12 percent thick, and with
chord 2b6=12.7 em, tested at 0°.

y
» 4
Gl
& A"'x
\"\%@A A
'>;‘o J4€
F - 7 cul—hS
e
.50

0 % Y e %

13294
FIGURE 11.—Cass 1, Flexure-torsion (&, «): 8howing dependency of F on %: The
upper carveis experimental. Airfoll withr-%_— a= —Q04;1=0.2; 4:-.01;% varlable.

Wing A, aluminum, with the following constants:

K.=4—}6, 4=—04, z.=0.31, 0.173, and 0.038,

respectively;
7.2=0.33 and w,=7X27
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Wing B, wood, with flap, and the constants:

K=—130, C=O.5, (1,=:—-O.4:, :ta=0.192’ ra2=0.178,
%:0.019’ 1'52=0.0079’ and We kept CODBtaIlt
=17.6X2%

The results for wing A, case 1, are given in figure 15;
and those for wing B, cases 2 and 3, are given in figures
16 and 17, respectively. The abscissas are the fre-
quency ratios and the ordinates are the velocities in
cm/sec. Compared with the theoretical results calcu-
lated for the three test cases, there is an almost perfect

3.00

2.50

2,00 #

7
//
1.00
S0
Jd -2 -4 -&
a
F1GuRE 12—Case 1, Flexure-tarsion (, «): Showing dependency of F on location
+  ofaxisofrotationa. Alrfoll with rm-Lizm0.2:¢ -%;2-%-: a variable.

agreement in case 1 (fig. 15). Not only is the minimum

velocity found near the same frequency ratio, but the
experimental and theoretical values are, furthermore,
very nearly alike. Very important is also the fact that
the peculiar shape of the response curve in case 2, pre-
dicted by the theory, repeats itself experimentally.
The theory predicts a range of instabilities extending
from a small value of the velocity to a definite upper
limit. It was very gratifying to observe that the upper
branch of the curve not only existed but that it was
remarkably definite. A small increase in speed near
this upper limit would suffice to change the condition
from violent flutter to complete rest, no range of transi-
tion being observed. The experimental cases 2 and 3
are compared with theoretical results given by the
dotted lines in both figures (figs. 16 and:17).

REPORT NATIONAL ADVISORY COMMITTEE FOR ARRONATUTICS

The conclusion from the experiments is briefly that
the general shapes of the predicted response curves re-
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F1GURE 13.—Case 1, Flexure-torsion (&, «): Showing dependency of F on the radius
of gyration ra=r.

A, airfoll with am —04; x—%: =03 5‘,—%‘ r variable,

B, airfoll with am ~0.4; =1 2=0.2} -1.00; r variable,

2.50
I {
)
/
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/
B
|
/ |/
1.50 /
1 /]
F //
1.00 e
\\
C\' 7 :’T‘=1,4K=.OI
.50 2
o 2 4 .6
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F1aure 14.—Case 1, Flexure-torsion (8, ): Showing dependency of F on z., tho
location of the center of gravity.

A, alrfofl with ,--%-: a=—04; ‘-4_;0; E-%Fzmﬂab]e.
B, afrfoll With re-i3 gm—0.4; x=nii Zem 1 2 variable,
2 4 «n O

1. R WY N
C, alrfoil with re 5 a=—04; 100" o 1; z variable.

peat themselves satisfactorily. Next, that the influ-
ence of the internal friction” obviously is quite appreci-
7 This matter is the subject of 8 paper'now in preparation.
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able in case 3. This could have been expected since
the predicted velocities and thus also the air forces on
the aileron are very low, and no steps were taken to
eliminate the friction in the hinge. The outline of the
stable region is rather vague, and the wing is subject

50
\
0
0/
S e~y ) 9 0/
AN 0
N \,\0
= Experimental A A
" 30 Unsiable 4
L N
& <
R 20 [~
/0
0 2 4 Ny .8 1.0 .2 1.4
Wy [ W

FigURE 15.—Cass 1. Wing A. Theoretical and experimental curves giving flutter
valocity v against frequency ratlo :'2- Defloction-torsion.

to temporary vibrations at much lower speeds than
that at which the violent flutter starts. The above
experiments are seen to refer to cases of exaggerated
unbalance, and therefore of low flutter speeds. It is
evident that the internal friction is less important at
larger velocities. The friction does in all cases increase
the speed at which flutter starts.
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F1GURE 18.—Case 2. Wing B. Theorstical and experimental curves giving fiutter
velocity # agalnst frequency ratio ::’f Afleron-deflection (B, A).
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FIGURE 17.—Cass 3. Thooretical curve glving flutter velocity against the fre-
quency ratio :—;- The experimental unstable area is indefinits due to the Im-
portance of internal friotion at very small velocities. Torsion-aileron (a, 8)



APPENDIX II

EVALUATION OF ¢,

(E—z)*+ (y—y)®
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_ —z;)*+ (y—1) Tidz;
- log (3_31)2‘}‘ (Z/'{‘yl)z:l f o (@—a)
—-— 1—ze—yyl—¢* zidz
2¢log (—c) 2y.£ Vl—xl’(a:—:z:,)

+J:1 1/1—::1("12—11) f1/1—a:,

d:cl . .
+ xf—;l_—x)v=1_=l fPutting z;=cos 6]

= 1 1—z cos 64 +/1—z%sin §)cesé=1
B J1—a? 0g cos 08—z cos fec
—cos-] z 1—cztI—Bf1—&
=¢0S c+‘/1_xal z —
—cos—! < c—z

cos c+_‘/1_z,10g1_c_t_‘/l_3e‘/1_cg

1‘02—:‘-- —2¢log (1—cx—1—2*1—c)+2¢ log (z—c)
—24/1—2* cos7¢—2z log (c—2)
+2z log (1—cx—1—221—¢%)
—+1—a24/1—=

=2 (z—c) log (1_&. prams
—21/1‘—_.::’ cos~Ic
EVALUATION OF ¢;
o= [ logle—2)+ -
—logl@—1)*+ (y+y)71} @ —c)da;

=(i;—°)—’{1og[(z—xl)’+ w—9)d
—log[(z—z;)2+ (y+y1)’] 35

+yf (@1 —e)? 7 (a:—:r,l)
f Yy —c)*dm f 1 —c)idzm _
n(z—z) 1—2%@—a)
zy=cos 8, y,===.in 0, dz;=—sin 640

J;l ———(I‘_c)adzl=sm 04 (@—2¢)6— (x—c)zf d6

h(z—2) z—cos f

fl de nf‘ d(x4-6)
. z—cos 8 ). x+cos (w16)

(cos 8—c)%de
r—cos §

432

__1 Jog LT €08 90— +/1—2® sin g cos =1
A1—22 g z—cos 8 08 fmc
1 1—2 1—cz—1—22/1—¢
=1/1—:c"[10g2:—1—10g z—c¢ :|

= 5108 (1—cr—T—FAT=

+ﬁlog(&:—c)
‘—% V1— I”I: /1—c*— (x—2¢) cos™l¢

+§7—%log(l cx—1—aE+1—c?)

—%log (:c—c)}
—-ga,=—1/1 —J1—#—cos le(x—2¢)/1—7

+(z—0)? log (1—cz—+1=2y1—¢)

—(z—c)?log (z—¢)
EVALUATION OF T3

f’2_1r¢z(x—0)d3=‘“1/1'—02]'(3_0%/1_:;2da:
—cos"cf(a:—c) (z—20)J1—2* dz
+(—x%cxlog (1—ex—+1—23/1—¢?)

—F @0
—71- f(:c—c)"dx— =< JLI—L:E dz

—f(:c—— ¢)? log (z—c)dz; z=cos 6§, dz=—sin §d6

2Zr qo,(:c—c)d:c—- Jl—czf (cos 8—c) sin? 6d6

+4cosl¢ | (cos —c)(cos —2¢) gin® d0
+87 1og (1—ca—VT=2I=
__%f(x_c)sdx+il4__jf(cos 6—c)3do
—-(ﬁ_—c)f log (z—¢) +%f(x—0)3dz

2—:5 lgo,(.v—c)d:c=—cos“cfcos4 6de
+<3c cosle— T +‘/14?°2> f cos® 60
+ (cos"‘c—2c’cos‘ic+ e I=c¢— %GJT——c’)fcos’ 6do

-I—<—3c cos~ e+ 1/1_—6—2+¢02>f003 6de
+<:2¢:2 cos“c—cw/-ch_"’-—chfl‘i—;?f)fdﬂ




GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF FLUTTER 433

— —cos-le I:cos3 0 sin 0 3 <0 _, sin 0 cos 0>] EVALUATION OF T
l — — e —
1 B . f{Z(a:—o) log1 & “1_ Fyl—c
+3( 3¢ cos lc—z +1—¢% )sin 0(cos® 6+2) ¢ r—c

A=\/0 s —2/T—2 cos? }dz—T=—2f —¢) log (@—c)d
+( cos—te—2¢* coste+C 14 H)(g +s1n02cos 0) cos™ ¢ 5 (z—c) log (x—c)dz

+2 | @—¢) log @—ez—+1—2*y1—cHdz
i 304 T3 J VimE
—3 1 1— 0
+(~8e cos7tet =@+ 2= )sin ~2 coss [ VI= da=—2E7 L 1og e—g
i e
+<2c2 cos~lc—cf/1—c2— 1 6 +f(:c—c)da;+2 cos"cfsm 29de

=cos"c(%1r+ —g—3'a" =—§1r cos ¢ + (@z—e)? log (1—cz—+1—22/1—¢%)
2o —etai=C
—f(:c—c)’ vi—& 4,
s EAIE e 301=2 I—e—I—2y1—C
=cos ‘¢ 7t t—3 Now
— Ji—e
—| ¢ cos™le— 14_02:](021/1—024—21/1—07) f(:c—c)" ) _c+x1/1—:c’ de
A - o l—cr—+1—F1—¢
- e/ —?) coslctc+/1—
‘—<'—3G COS~IC+1’1—‘CZ+L ﬁ ‘/1_02 —I—(]_ ] J‘(z—c)‘\/ Ig-l- ('.t—c)-\,l d
—-(20“ COS_IC'—'O'\HS—'OZ—GS '{1—C’> cos”le . —f(z—c)d:c—l-w/— czf z— cg dz
=cos™ ¢ ———:+c2 —2¢ ] ' Ty=—(@—c)*log (@—c)+2 cos“cfsm 26d6
++1—=¢c cos“c[ca+——c3 20——+c3+3c+c 4 (@z—c)log (1—cx—+1—z2y/1—c%)
:|+cz(1_cz)L(1 —&) 02(1 ) —I—Vl—c’f(cos 8—c)dd
e . =289 ¢(g—in 9 cos 6)+ I sin 0
—(l—c’)—u4—cz)=—<§+c’>(005“c)’ cosomel
—01/1—020\ o e

cy/1—c* cosl¢ _{—c) =
+__4_s_ (74+2¢% 3 (5c*+4) (=T I =—(1—c%)— (cos™¢)*+}2¢c+/1—c® cos™'c



